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VIBRATIONAL AND CHEMICAL KINETICS EQUATIONS IN A COMPLEX GAS MIXTURE 

O. V. Skrebkov UDC 533.6.011.8 

As a result of the development of computer engineering, as well as the achievements of 
experimental and theoretical science on the kinetics of elementary processes in gas systems, 
as a research instrument supplementing, or even replacing completely, the tedium of experi- 
ment in the last two decades, computation of complex mixtures in composition and gasdynamics 
are widespread. In particular, a broad class of problems exists for the analysis of multi- 
component gas mixture flow which requires taking account jointly of the chemical reaction 
kinetics and the vibrational energy exchange processes. On the basis of utilizing simplify- 
ing assumptions in the majority of problems of this kind, the kinetic~equations are formu- 
lated in the form of macroscopic equations for the concentration and the mean vibrational 
energies of the components or separate vibrational degrees of freedom (modes) (see [i, 2], 
e.g.). However, knowledge of the population of the vibrational levels of the separate molecu- 
lar components of the mixture that changes as a result of chemical and vibrational interac- 
tion with a large number of other components can have value, in principle, in solving a num- 
ber of problems (for instance, in modeling working media flows in chemical lasers [3]). Se- 
quential formulation of the kinetic equations in the form of population balance equations for 
the vibrational states of a large number of complex mixture components, without already 
speaking about the extreme tedium of solving them in conjunction with the gasdynamics equa- 
tions, evidently simply have no practical meaning because of the absence of detailed in- 
formation about the quantitative characteristics of a very large number of elementary pro- 

cesses required in this case. 

Such a formulation of the kinetic equations, in which one group of chemical components 
and vibrational states is considered microscopically (i.e., in the form of population bal- 
ance equations) and the other macroscopically (i.e., in the form of equations for the mean 
vibrational energies and concentrations), results in a significant reduction in the vibra- 
tional states taken into account and in their associated elementary processes as compared 
with the sequential microscopic approach. An example is given in this paper of such a com- 
bined formulation of the kinetic equations. Here the subsystem considered microscopically 
is a mixture of diatomic gases, anharmonic oscillators, chemically and vibrationally inter- 
acting mutually and with other polyatomic components comprising the subsystem considered 

macroscopically, in the general case. 
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i. KINETIC PROCESSES AND ASSUMPTIONS 

The following simplifying assumptions are used in formulating the kinetic equations: 
a) The chemical reactions do not spoil the Maxwell distribution; b) the rotational degrees 
of freedom are in equilibrium with the translational; c) each kind of vibrations (mode) of 

the molecules considered macroscopically is modeled by a harmonic oscillator with infini- 
tesimal characteristic time of VV-exchange within the mode, and the vibrational temperature 
T k is used as a measure of the mean energy of such a mode (the k-th, e.g.); d) the mole- 
cules of the components considered microscopically are modeled by Morse oscillators. 

The following are postulated as possible elementary processes. 

i. Integrated or macroscopic chemical reactions resulting in a change in the component 
concentration as a whole 

N h e N 

3=1 k ;  j = l  
t 

where Yj is the j-th chemical component, ~jr, ~jr are stoichiometric coefficients of the 
j-th component in the r-th reaction, N is the total number of chemical mixture components, 

I 

and kr, k r are rate constants of the r-th chemical reaction in the forward and reverse direc- 
tions. 

2. Detailed or microscopic chemical reactions (with the participation of components con- 
sidered microscopically): 

hr(f) , 

i j~i hi(f ) ~ j~ (1.2) 

where Yi(f) is the i-th chemical component in the vibrational state f, and kr(f), k~(f) are 
rate constants of the r-th microscopic chemical reaction in the forward and,reverse direc- 
tions. It is assumed that one of the stoichiometric coefficients Vir or ~ir of the i-th 
component, considered microscopically, equals zero. 

3. Integrated or macroscopic vibrational relaxation processes of the components (or 
modes) considered macroscopically and modeled by harmonic oscillators 

p(q) Ji {,~; ~} ~ {,~ --  l~q; ,~ + l,q}, (1 .3)  

in which a diminution in the vibrational quantum numbers v m by ~mq occurs during the colli- 
sion of molecules of the j-th and i-th species in the modes m while v n increases by ~nq in 
the modes n. By virtue of utilization of the harominc oscillator model for modes taking part 
in a q-th process of type (1.3), the probability of such a process is characterized uniquely 
by the probability of the appropriate transition between the lowest states [i], i.e., 

- ~i = P j i  lnq 

4. Detailed or microscopic vibrational relaxation processes during molecule--anharmonic 
oscillator collisions 

{ / ; 4  ~ { / - -  Z~q; s + ljq}, (1.4) 
Df,f--liq 

P(q)r s)=*s,~+Z~q is the probability of a q-th process of type (1.4) in which ~iq quanta where ~i} ~J, 

of a molecule of the species i in the vibrational state before a collision f is exchanged by 
ljq quanta of a molecule of the species j in the vibrational state s before the col!ision. 

5. Detailed or microscopic vibrational relaxation processes of molecules of components 
considered microscopically and modeled by anharmonic oscillators during collisions with mole- 
cules of components considered macroscopically and modeled by harmonic oscillators; 

{/; v~, vn} ~ {/ - - / iv ;  v m - - l m q ,  N n +  lnq}. (1 .5 )  

In a q-th process of such kind, a change in the quantum number f of molecules, an anharmonic 
oscillator of the species i, by • is accompanied by a change in the quantum numbers v m 
and v n of the modes, harmonic oscillators m and n of molecules of the species j, by ilmq and 
$Tnq, respectively. By virtue of using the harmonic oscillator model for modes m and n, a 
process of type (1.5) is characterized by the probability 

D(q) 0 _ ~j ( / ) =  p lmq, 

(o, J 
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For a given translational gas temperature T and pressure p (or density p) the mixture 

state is determined by values of the component concentration n i per unit mass of mixture, by 
the mean energies Sk of the modes considered macroscopically, and by the relative populations 

of the vibrational levels of the modes considered microscopically: 

x i l  : n i l / n l  (1.6) 

(nif is the concentration of the i-th component in the vibrational state f). 

2. EQUATIONS FOR THE CONCENTRATIONS 

Under assumptions '"a" and "b" the equations for the component concentration per unit 

mass n i have the form 

d n - - i = Z ( @ - - v i , ) ( R , - - R ' ~ ) ,  i =  t ,  2, Y.  ( 2 . 1 )  
dt r " " "' 

If the r-th chemical reaction refers to the type (i.i), then 
N N 

Rr = k~..II (pnJ~'J r, B'r---- k; . I I (pn j )~J  r ( 2 . 2 )  
3~I 3=I 

with the rate constants kr(T, T k) and k;(T, T k) dependent on the translation temperature and 
the vibrational temperatures T k (the mean vibrational energies s k) of the modes taking part 
in the molecule reaction (see details in [2]).* In the general case of a polyatomic molecule, 
the vibrational temperature and mean energy (mean store of vibrational quanta) of the k-th 

mode are connected by the relationship [I] 

e x p  ( - - O h / r k )  = eh/(;~h + ek) ,  

w h e r e  0 k and  X k a r e  t h e  m a g n i t u d e  o f  t h e  v i b r a t i o n a l  q u a n t u m  o f  t h e  t r a n s i t i o n  1 § 0 i n  d e -  
g r e e s  and  t h e  d e g r e e  o f  d e g e n e r a t i o n  o f  t h e  k - t h  mode .  

If the r-th chemical reaction is among the type (1.2), then 

t N t 
N t t ~{T 

~JJ i l J t l ~  J' , B r =  ( 2 . 3 )  
] j = l  ] ~=1  

k~(/) = k~g~(]), Z g ~  (/) = ~, k;(/) = k~ ( / ) / [x~5~(r)] .  
] 

o 
H e r e  g r ( f )  i s  t h e  v i b r a t i o n a l  d i s t r i b u t i o n  o f  t h e  i - t h  c o m p o n e n t  i n  t h e  r - t h  r e a c t i o n ,  x i f  = 
xif(T) is the equilibrium value of xif, and K r = Kr(T) is the equilibrium constant for the 
appropriate integral reaction. 

3. EQUATIONS FOR THE MEAN ENERGIES OF MODES CONSIDERED MACROSCOPICALLY 

Sequential deduction of kinetic equations for mean vibrational energies sk from the popu- 
lation balance equations under assumptions "b," "c" is executed in [i]; taking account of the 
influence of the chemical reactions, the equations for s k have the form [2] 

d% .~- , , , 

d-v 
q r 

k = i, 2, ..., S (the mode k belongs to the molecule of species j) 

q = = i=I ~--J~ ~m x lmq 

(processes of the type (1.3) as well as processes of the type (1.5) written asintegrals with 
respect to f, i.e., analogous to (1.3), are taken into account in the summation" over q). Here 
S is the complete number of modes considered macroscopically, s~ = Ek(T) is the equilibrium 

*The dependences of the reaction rate constants on the vibrational temperatures of the cor- 
responding modes, presented in [2], have been obtained [4, 5] within the framework of assump- 
tions "a"-"c" for the specific case of a dissociation reaction. However, to derive these de- 
pendences, the concretization mentioned is not the principal and they are of substantially 

more general nature. 
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value of Gk; oji = i + 6ji (~ji is the Kronecker delta), Xrk(Xrk) is the mean number of vibra- 
tional quanta obtained (lost) by the k-th mode in one act of generation (annihilation) of 
molecules of species j in the r-th reaction (see [2] for details). Reactions of the type 
(I.i) as well as reactions of the type (1.2) in which the macroscopic component under con- 

sideration j written as an integral with respect to f, i.e., analogous to (i.I), takes part 
are taken into account in the summation over r. The mean energies of modes considered 
mieroscopica�88 (taking account of processes of the type (1.5)) can be in the expressions 
for Qq and Qq: 

8~ = ~ ] ( ~ -~  f/2W~) x~, W~ = (%)U2 (~xe)~, 
f 

where (~o)i and (~eXe)i and the fundamental frequency and the spectroscopic constant of anhar- 
mony of the i-th vibration, and xif is the relative population of the f-th vibrational state 
of the i-th component considered microscopically. 

4. EQUATIONS FOR xif 

The relative populations of the vibrational states of diatomic molecules, anharmonic 
oscillators considered microscopically, can change because of the processes (1.2), (1.4), 
and (1.5), i.e., 

< ' -  (<4 + d---~ -- \ dt  7~'~ \ " ~ ] 4  \ -~ -75 '  

where according to definition (1.6) 

f (4.1) 

Because of the progress of the detailed (microscopic) chemical reactions (1.2), the 
change in xif satisfying the normalization condition (4.1) is 

(dz~J/ - - ~ ( v l r - - v i ~ ) [ R r ( / ) - - R ' r ( / ) ] ,  (4 2) 
dt ]2 - -  Pn i 

where the q u a n t i t i e s  Rr( f )  and Rr(f )  a re  determined by (2 .3) .  

The change in xif because of the progress of vibrational relaxation processes of the 
type (1.4) for diatomic molecule collisions, anharmonic oscillators of one (i = j) or dif- 
ferent (i r j) species, under assumption "b" has the form of the right side of the g~inetic 
equations for a binary mixture of diatomic molecules (see [6], e.g.). Taking account of 
the principle of detailed equilibrium and assumption "d," we obtain in most general form 

-- x~/ exp 0j 
s q xjs T ljq I 

W~--Ijq 
2 f -  liq~] Ns_Ijq, s "~  _s,s+ljq 

-2-~ ] j ~l,f-~q + x~,,+qq ~ xj~9,,+%,j- 
8~0 

2g -- ljq~ O, 2f -:V liq t ] c~s_ijq, s . '  Jq 

(4.3) 

where 

Vz 
a (4.4) 

Zij is the number of collisions of molecules of species i per unit time with molecules of 
species j for a unit concentration of molecules of the species i, and summation over j is 
executed in the case of VT-exchange (s = s' = 0). 

The change in xif because of the progress of processes of type (1.5) is written first 
in the form of appropriate population balance equations for the vibrational states 

q {~,~,~n} [ tv,~ + lnq, v,~ ; (4.3) 

tu , ,  Vn + lnq J t u n -  lnq, Un ) tun, v n -  i,n~ j J  
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where 

f:':' ,/ f:':' ,) alum' ~,1= z,~p p ,  ~,~l; 
tun, Un J IUn, Un J 

(4.6) 

Y{Vs} o- nj{Vs}/n j is the relative population of the vibrational state {v s} = (vz, v2, ..., 
Vb~) 7 a polyatomic molecule of the species j. Taking account of the detailed equilibrium 
prlnciple and the expressions for the populations of the vibrational states of molecules of 
species j resulting from assumption "c" 

bj ~s vs 

~=~ (x~ + ~)~+~ 

in the case of diatomic molecules, Morse oscillators, we have 

,,~,, =~{[x,,,_,~ e -~' ' -'-'~q' (4.8) Cq (i, l - -  liq) - -  

Oi i 2S+ziqX ] } 
xi]e Bq -- Xi,]+li q Cq (] -~- liq, 1) , ;  

where 

(4.7) 

(4.8) 

~m(x~+~) j ~*L~~ , 

s ,r  1 
cq(l,/)= ~ y{~,.,.4~ urn, urn--Z,, d. (4.1o) 

{Vm'Vn} tun, Un -~ lnq J 

Further manipulation of (4.8)-(4.10) consists of simplifying (4.10) and is associated with 
utilization of the relationship 

fJ, s' ) / i , r /  
p V~, u~.-z~.q~ = pizmq, o~H ~m' n (" + ~nq+ ~"-  ~)' (x"- 1)' 

tu~, u , ,+  l,~q ) ,0, lnqJ t,~q!(~-~- zmq)! ~-,-(,~+z~-1)! d~q+~,~-O!'  

analogous to that obtained in [i] for the probability of the process (1.3). 
of (4.6), (4.7), and (4.11), it can be shown that 

I" o'I Cq (], I ') = ~ ~-~q, H (7.~ + ~.0 ~m+zmq [0, InqJ m (~m-- l)! lmq! 

'lD,ffl ~ 0  

(4.11) 

Taking account 

.~,~! \zm + ~m] n (z,~q + Xn -- t)! ~'d ~ " Vn=O 

Summing over w m and v n 

we obtain 

oo 

Z( k+n)!  h =  n! 
~=o----FF--. x ( t - -x )  n+l' x <  t ,  

(4.12) 

Thus, we finally have as the equations for the relative populations of the vibrational 
states of diatomic molecules, Morse oscillators, considered microscopically: 

342 



dt pn { 

+ xi,l-hq Z x~ exp liq t 2W i - -  -T- [iq i -2-~7 ] j X 
s:ljq 

s- l jq ,$  - -  x s ,s+ljq 
liq ~ js ./+z~q,] xi] exp ljq 1 • flj,j_~q + x~;j+ xj~ - 2 ~  ] (4 .13)  

s : o  s : l j q  

O i 2J -'7 liq ~ 
T liq t 2W{ ] "~]+liq'l -t- Zs:o xJseL]-tiqJ] + 

_ 2  l. ~ _-~ .~q~ _O_i . { _~ 

+ ~ x~,~-l~qe -- x~j Cq (1, ! - -  liq)-- 

where the quantities Rr(f) ' s,s' , Rr(f), 9~f f,, Bq, and Cq(f, f') are determined, respectively, 
by the relations (2.3), (4.4), (4.9)]'and (s (4.6). Only chemical reactions of the 
type (1.2) are taken into account in (4.13) in the summation over r, while only processes 
of the type (1.4) are taken into account in the summation over q in the first sum and only 
processes of the type (1.5) in the second sum. 
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INFLUENCE OF NONEQUILIBRIUM OF THE CHEMICAL COMPOSITION OF A GAS ON ITS MOTION 

B. A. Klumov and I. V. Nemchinov UDC 533.6.011 

We consider a gas cloud in which chemical equilibrium is disturbed, which can be ac- 
complished, for example, by a pulse of ionizing or dissociating radiation. In this case the 
specific thermal energy e t can be far lower than the specific chemical energy ec, i.e., the 
energy expended on breaking chemical bonds, the excitation of levels, and ionization. 

In the process of relaxation of the nonequilibrium state of the gas the chemical energy 
is converted into thermal energy and the initially stationary gas starts to expand. The de- 
crease in density during the dispersal causes a decrease in the rates of the chemical reac- 
tions, and the transfer of chemical into thermal energy is slowed, which in turn influences 
the intensity of dispersal. In such phenomena the gasdynamie processes and processes of 
chemical kinetics are closely connected with each other. A joint solution of the equations 
of gasdynamios (GD) and chemical kinetics (CK) is required for their correct description. 
Here the solution even of the CK equations alone causes considerable difficulties, since the 
corresponding system is "strict" [i]. Sufficiently effective methods of solving such sys- 
tems were recently developed [2, 3]. However, for a moving gas additional difficulties 
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